Computing traveltime and amplitude sensitivity kernels in finite-frequency tomography
نویسندگان
چکیده
The efficient computation of finite-frequency traveltime and amplitude sensitivity kernels for velocity and attenuation perturbations in global seismic tomography poses problems both of numerical precision and of validity of the paraxial approximation used. We investigate these aspects, using a local model parameterization in the form of a tetrahedral grid with linear interpolation in between grid nodes. The matrix coefficients of the linear inverse problem involve a volume integral of the product of the finite-frequency kernel with the basis functions that represent the linear interpolation. We use local and global tests as well as analytical expressions to test the numerical precision of the frequency and spatial quadrature. There is a trade-off between narrowing the bandpass filter and quadrature accuracy and efficiency. Using a minimum step size of 10 km for S waves and 30 km for SS waves, relative errors in the quadrature are of the order of 1% for direct waves such as S, and a few percent for SS waves, which are below data uncertainties in delay time or amplitude anomaly observations in global seismology. Larger errors may occur wherever the sensitivity extends over a large volume and the paraxial approximation breaks down at large distance from the ray. This is especially noticeable for minimax phases such as SS waves with periods >20 s, when kernels become hyperbolic near the reflection point and appreciable sensitivity extends over thousands of km. Errors becomes intolerable at epicentral distance near the antipode when sensitivity extends over all azimuths in the mantle. Effects of such errors may become noticeable at epicentral distances > 140 . We conclude that the paraxial approximation offers an efficient method for computing the matrix system for finite-frequency inversions in global tomography, though care should be taken near reflection points, and alternative methods are needed to compute sensitivity near the antipode. 2007 Elsevier Inc. All rights reserved. PACS: 02.60. x; 91.30. f; 91.30.Ab; 91.30.Cd; 91.35.Pn
منابع مشابه
Finite-frequency sensitivity kernels for head waves
S U M M A R Y Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examin...
متن کاملEmpirically determined finite frequency sensitivity kernels for surface waves
S U M M A R Y We demonstrate a method for the empirical construction of 2-D surface wave phase traveltime finite frequency sensitivity kernels by using phase traveltime measurements obtained across a large dense seismic array. The method exploits the virtual source and reciprocity properties of the ambient noise cross-correlation method. The adjoint method is used to construct the sensitivity k...
متن کاملA correlation-based misfit criterion for wave-equation traveltime tomography
S U M M A R Y Wave-equation traveltime tomography tries to obtain a subsurface velocity model from seismic data, either passive or active, that explains their traveltimes. A key step is the extraction of traveltime differences, or relative phase shifts, between observed and modelled finite-frequency waveforms. A standard approach involves a correlation of the observed and measured waveforms. Wh...
متن کاملGlobal P and PP traveltime tomography: rays versus waves
S U M M A R Y This paper presents a comparison of ray-theoretical and finite-frequency traveltime tomography for compressional waves. Our data set consists of 86 405 long-period P and PP–P traveltimes measured by cross-correlation. The traveltime of a finite-frequency wave is sensitive to anomalies in a hollow banana-shaped region surrounding the unperturbed ray path, with the sensitivity being...
متن کاملHelmholtz surface wave tomography for isotropic and azimuthally anisotropic structure
S U M M A R Y The growth of the Earthscope/USArray Transportable Array (TA) has prompted the development of new methods in surface wave tomography that track phase fronts across the array and map the traveltime field for each earthquake or for each station from ambient noise. Directionally dependent phase velocities are determined locally by measuring the gradient of the observed traveltime fie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 226 شماره
صفحات -
تاریخ انتشار 2007